With disasters and disaster management being an “inherently spatial” problem, geospatial information and technologies have been widely employed for supporting disaster and crisis management. This includes SDSS and GIS architectures, VGI, spatial databases, spatial-temporal methods, as well as geovisual analytics technologies, which have a great potential to build risk maps, estimate damaged areas, define evacuation routes, and plan resource distribution. Collaborative platforms like OSM have been also employed to support disaster management (e.g., near real-time mapping). Nevertheless, all these geospatial big data pose new challenges for not only geospatial data visualization, but also data modeling and analysis; existing technologies, methodologies, and approaches now have to deal with data shared in various formats, different velocities, and uncertainties. Furthermore, new issues have been also emerging in urban computing and smart cities for making communities more resilient against disasters. In line with this year’s conference theme, the GIS Track particularly welcomes submissions addressing aspects of geospatial information in disaster risk and crisis research, and how this information should be put on the spot to improve resilience against disasters. This includes SDSS, near-real-time mapping, situational awareness, VGI, spatiotemporal modeling, urban computing, and other related aspects. We seek conceptual, theoretical, technological, methodological, empirical contributions, as well as research papers employing different methodologies, e.g., design-oriented research, case studies, and action research. Solid student contributions are welcome.

**TRACK FORMAT**

The GIS Track will adopt two presentation formats: a) plenary sessions and poster sessions. Plenary sessions will provide a room for authors of papers briefly present their work. For making these sessions as interactive as possible, chair of a session will recommend that authors of the same sessions prepare in advance a set of questions to the presenters. The main goal is that these questions could raise further questions about the presented works, and thus may lead to interesting discussions. In contrast, poster sessions provide an opportunity to debate on emerging trends of research, as well as insightful ideas in the area. During these sessions, systems demonstrations and preliminary results would be encouraged, as they could make the debates more interactive.
TRACK TOPICS

Track topics are therefore focused on but not limited to the following list.

1. Geospatial data analytics for crisis management
2. Location-based services and technologies for crisis management
3. Geospatial ontology for crisis management
4. Geospatial big data in the context of disaster and crisis management
5. Geospatial linked data for crisis management
6. Urban computing and geospatial aspects of smart cities for crisis management
7. Spatial Decision Support Systems for crisis management
8. Individual-centric geospatial information
9. Remote sensing for crisis management
10. Geospatial intelligence for crisis management
11. Spatial data management for crisis management
12. Spatial data infrastructure for crisis management
13. Geovisual analytics for crisis management
14. Spatial-temporal modeling in disaster and crisis context
15. Crisis mapping and geovisualization
16. Collaborative disaster mapping
17. Public policies for geospatial information
18. Empirical case studies

TRACK CHAIRS

Prof. Dr. João Porto de Albuquerque*
j.porto@warwick.ac.uk
Institute of Global Sustainable Development, University of Warwick

Prof. Dr. Alexander Zipf
zipt@uni-heidelberg.de
Institute of Geography, University of Heidelberg

Prof. Dr. Flávio E. A. Horita, flavio.horita@ufabc.edu.br
Center of Mathematics, Computation and Cognition, Federal University of ABC

*Corresponding Chair